a2 United States Patent

US009454409B2

10) Patent No.: US 9,454,409 B2

Laredo et al. 45) Date of Patent: Sep. 27,2016
(54) API MATCHMAKING USING FEATURE 2009/0235285 Al* 9/2009 Kim etal. ...ccooevvne... 719/328
MODELS 2009/0249369 AL* 10/2009 Itoh ef al. ..ccoccoervrrrren 719/328
. . . . 2012/0266141 Al 10/2012 Fanning et al.
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US) FOREIGN PATENT DOCUMENTS
(72) Inventors: Jim A. Laredo, Katonah, NY (US);
Sriram K. Rajagopal, Chennai (IN); WO 2013071752 Al 5/2013
Maja Vukovie, New York, NY (US); OTHER PUBLICATIONS
John E. Wittern, Berlin (DE) Aopendix P List of IBM Patents or Patent Apofications Treated
(73) Assignee: Internati(.)nal Business Machines ng;:d.x e alenis of Talent Applications frealecas
Corporation, Armonk, NY (US) U.S. Appl. No. 14/537,961 entitled “Profile-Driven Merging of API
Components”, filed Nov. 11, 2014.
(*) Notice: Subject to any disclaimer, the term of this Acher et al., “Composing Feature Models”, Author manuscript,
patent is extended or adjusted under 35 published in “2nd International Conference on Software Language
U.S.C. 154(b) by 4 days. Engineering (SLE’09), Denver: United States (2009)”, hal-
00415767, version 1—May 17, 2010.
Acher et al., “On Extracting Feature Models From Product Descrip-
(21) Appl. No.: 14/487,437 tions”, VaMoS ’12, Jan. 25g-27, 2012 Leipzig, Germany, CopyrigI})lt
. 2012 ACM 978-1-4503-1058-1.
(22) Filed: Sep. 16, 2014 Panziera et al., “Distributed Matchmaking and Ranking of Web
APIs Exploiting Descriptions from Web Sources”, 2011 IEEE
(65) Prior Publication Data International Conference on Service-Oriented Computing and
Applications (SOCA), Dec. 12-14, 2011, Irvine, CA, pp. 1-8, DOL
US 2016/0077893 Al Mar. 17, 2016 10.1109/SOCA.2011.6166201.
(51) Int. ClL * cited by examiner
GO6F 9/54 (2006.01) . .
GOGF 9/445 (200601) Prlmary Examiner — Umut Onat
GO6F 9/44 (2006.01) (74) Attorney, Agent, or Firm — William H. Hartwell
G06Q 10/06 (2012.01) (57) ABSTRACT
(52) US.CL Software that uses machine logic based algorithms to help
CPC . GO6F 9/54 (2013.01); GO6F 8/20 (2013.01); determine and/or prioritize an application programming
GO6F 8/36 (2013.01); GO6F 9/44505 interface’s (API) desirability to a user based on how closely
(2013.01); GO6Q 10/06 (2013.01) the API’s terms of service (ToS) meet the users’ ToS
(58) Field of Classification Search preferences. The software performs the following steps: (i)
None receiving a set of API ToS feature information that includes
See application file for complete search history. identifying information for at least one API and respectively
associated ToS features for each identified API; (ii) receiving
(56) References Cited ToS preference information that relates to ToS related pref-

U.S. PATENT DOCUMENTS

6,831,635 B2 12/2004 Boyd et al.
7,587,453 B2 9/2009 Bhrara et al.
7,774,406 B2 8/2010 Russo et al.

2004/0057390 Al 3/2004 Boleyn et al.
2005/0165902 Al* 7/2005 Hellenthal HO4L 29/06

709/217

erences for a user; and (iii) evaluating a strength of a match
between each respective API identified in the API ToS
feature information set and the ToS preference information
to yield a match value for each API identified in the API ToS
feature information set. The ToS features include at least a
first ToS field. At least one API includes multiple, alternative
values in its first ToS field.

20 Claims, 12 Drawing Sheets

250

Programmer Chooses Functionality Requirements
AND TOS Preferences

Software Determines Match(

s) for Functionality Requirements

26

m(‘D

<

Software Ranks Match(es

—

Based On TOS Preferences
26

-

5

‘

Software Communicates At Least One Match To Programmer

!

Programmer Purchases One Or More API(s)

US 9,454,409 B2

Sheet 1 of 12

Sep. 27, 2016

U.S. Patent

0p

P61

I
(s)801A8(]
p - | [ewsp
ﬂ P
v/
j8idepy Yioms (8)s0eLaY
07 - Ve i c«ﬂ 19N ol = ABi08I0
P ﬂ/&mw 1A
- \‘Nm L
/ 1
- ayoen) Buiss800id Y]
afieiolg
- WYY
08
07 ‘RIOwBy
71 UBAI8S [WSISAS Jsindwion oL

U.S. Patent Sep. 27, 2016 Sheet 2 of 12 US 9,454,409 B2

[0 oo |

US 9,454,409 B2

Sheet 3 of 12

Sep. 27, 2016

U.S. Patent

A E

BIBNIIOS SIBMIOS pUE SIEMpIBH

1BAIES B09 ~, SWESAG SWoIsAS SIBAIBY
alemyog uonesiddy | g lBENBPEIY o SBUBSY BINDBHYOLY
aseqele] ouomjeN BupuomgeN sfeinis gl SNE! D8l ssWeiuiEy
"\.... .
SIBED sucpeoyddy SyOMIBN oBeIog sons udnezZientiin \\
JaAl
mm,ém\m) {EmAIA [ENIA IBLIA BILIA

[CE

28

wiswsbeuspy

o Burou
E%M@ﬁ Mcwwmmmcmﬁ [BLIOH ﬁa.,m. d BUILOISIADLY
Buiuveid v1s SONIOS el BupsIopn 80IN0SaY 9

SPROPLOM \
PAETNETg]
upieL BliSso001g Bumsanold uolieonpl
ST LOTOBSUEI] soAlRUY //wooissern
Idy gl BNA

wewabeuepy
Erall Tl
pue

usuIdgansq
BIRAYOS

uonebiaep
pue
Burddep

U.S. Patent Sep. 27, 2016 Sheet 4 of 12 US 9,454,409 B2

250

Programmer Chooses Functionality Requirements
AND TOS Preferences
S255

¥

Software Determines Match(es) f

26

o

r Functionality Requirements

mcD
()

¥

Based On TOS Preferences

Software Ranks Match(es) Ba
265

mv

‘

Software Communicates At Least One Match To Programmer
S270

!

Programmer Purchases One Or More API(s)

S275
FIG. 4
Storage Device, 60a
Program, 300
Ul Mod Functionality Mod
302 304
TOS Mod Purchase Mod
306 308

FIG. 5

US 9,454,409 B2

Sheet 5 of 12

Sep. 27, 2016

U.S. Patent

V9 "Old

Aoijgng =

Aunger =

s319110d

s)sanbay Aued payl

gouel|dwon =

sabueyy =

1UN02YY =

s|ie1eQg

ON {73 S8A (O (POMO|[e dIAIBS 3y} Jo aBesn [e12JaWWOD §|

9sUB0I7 4

|juswhed |luswasiby |

slead O oand @ edAL
_ | :901AJ08

US 9,454,409 B2

Sheet 6 of 12

Sep. 27, 2016

U.S. Patent

J9 'Old

[@a1a108 Jo swis] aepdn/malp || siedwon | 831188 J0 SWIS] MON 1e819 |

alqnd

ERR) |

11qnd

9009

49 'Old

Aeyzig O
SWeN 991AI88 109|988

isal010d abueyo Bupud sy aie 1eUYM

iselnljod punjal sy) ale 1BYM

¢pe|puey 8q saindsip [|Im MOH

'sjeyeq |

|'% xel [¢]--1o8188--|épapnjoul

'sexe|

siieyeq [£]-108188--] ued 9, _H_ 91BY JseUsu|

:s|iejep JuswAed sie

'sjiereq [Z]

:Aousnbaig [7]

:BpOR

:s|ieyeq Buing

:ejonb 881) 1nOQR §|IB18P BPIACId

US 9,454,409 B2

Sheet 7 of 12

Sep. 27, 2016

U.S. Patent

L "9l
{SOPNIIXB= -me ., e e prem o)
: = =7 leuoido=Y Aiojepuew= 9.Njes] 9.Injesy aimesy |
{ sauInbal= - 40 40X euon Aw e w souejsu| | joesjsqy | Buidnoug | !
e e amnne s emma v e mne e n— ... u e e e\ e A A A e a A e a ey UAQ! *
Y18 |
AV
\vd adA].
Sal jo
UOIIBJOIA payijou
a/qisuodsal 1881
EEN anpocg
(o : o
|lew3 spouw abesn
Buiing [BI2JBLWWO?Y) J
Sof Jaumo Jybu
u obuey?) UBI0) m& 0] EE\,SQT ejonb mmiT MS 9sUddIT T
:o_wmm%_w_.“_oz jeban [ealuyaa] Joddng juawAfed Koeald Juswaalby
e e
—
SoL
<

004

US 9,454,409 B2

Sheet 8 of 12

Sep. 27, 2016

U.S. Patent

N4 SOl Jawnsuo)

W4 SOL J2plAoid

G8 e e X
SOPN|OXD= <tf--pe- :
..m.m.ﬁ.mll wmh_zcmhl é!l! mou/&moxu{_mco_uaouﬁw W
spouw Aousnbaiy ainjes ainjes ainjea !
ejonb sa. obue fi0jepuew= Jes] INjes) jedy
m:%ﬁ ! 1 Buing 43 ep w aouelsu| {1 joessqy |iBuidnols
e %\\\
juswied
G
E.l.)lnl(.ll.
aN — A azl|e1vads looines | | sol |
3 01 A 4
= [SUIuO | | Jeded | [Apoap | [Aiuo] [edAL |
= _ 7 7 i
80IAI8S S0] opow ousnbalj
KVW m mcmaﬁm lonb a3) Suig abueyn
[BUI0 | [ded | [Aweam | [304L | —7 " !
Avd % 1 juswAed juswoaalby
opow Aausnbauy abueyn
g Buiyig = "
RN w azi|e1oads
SOl —
JuswAhed JuswWwoalby 018
i N4 sol
0€8
SOl

> 008

U.S. Patent Sep. 27, 2016 Sheet 9 of 12

900<

ToS
Agreement Payment
ch Billiﬂ Nng
ange frequency qu mode
5 o e
Type Monthly wwwww | [Online
o - | Volume = i \
ToS Service E 10’000 ; \‘i
Sl‘-A Lw[ewgywewswtiwj E Invoice
E , fees =
. 0.058
| Opp. Cost =!
' 1,250.00 § |
Key: —oremmmmmen .
. | Grouping|| Abstract || Instance
feature || feature || feature | ¢=mandatory §

$=optional =XOR 4 =0R

---F =requires
-£--¥ =excludes

“““““““““““

US 9,454,409 B2

ot

US 9,454,409 B2

Sheet 10 of 12

Sep. 27, 2016

U.S. Patent

0l "OId

(suonipuod xe|ay)
9|ij04d ayepdn

¢l0LS

0L0LS
19sn JO 181| 9pIA0Id

ON

800LS
,punoy s|dy jo
uonisodwod Buiyole

!

o
o
—

90015
s|dY JO uoljisodwod B s|dy

Joj Bunpjewyojew 93nsax3

!

v001S
9|joid Jawnsuod aulsp

adAy/|dy 1uapuadap yoes 104

!

¢00lS
(Ieyad “b) s|dy jo
uonisodwod jo adAy uaalb e o)
9|j04d Jswnsuod suljeQ

)N

~Fgor)

(siN4 solL
Japinoid)
aoe|dioylep
|dV

N
N

T
¢S50l

(W4 soL
Jawnsuo)

$3]1J01d
Jawinsuon

T T
e

Jadojanap

U.S. Patent Sep. 27, 2016 Sheet 11 of 12 US 9,454,409 B2

App / pattern 1100a

A : A A
' ToS FM for API 1 ToS FM for APlin
| ______Tequires | §
o eXCludes §
FIG. 1A
1100b

PN

ToS FM for APl n

FIG. 11B

U.S. Patent Sep. 27, 2016 Sheet 12 of 12 US 9,454,409 B2

1200a
APl | API Functionality ToS Pref. Match
A Add two numbers ?
B Multiply two numbers ?
C Add two numbers ?

What API functionality do you want?
>

What commerciality ToS feature do you want (commercial or non-commercial)?
>

What geographic ToS feature do you want?

>
0
FIG. 12A
1200b
API 1 AP| Functionality ToS Pref. Match
A Add two numbers 100%
C Add two numbers 50%

What API functionality do you want?

> Add two numbers

What commerciality ToS feature do you want (commercial or non-commercial)?
> Commercial

What geographic ToS feature do you want?

> North American us only

0S B
FIG. 12B

US 9,454,409 B2

1
API MATCHMAKING USING FEATURE
MODELS

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of
application programming interfaces (APIs), and more par-
ticularly to the field of API matchmaking.

APIs are known. Conventionally, an API is a set of rules
and specifications that a software program can follow to
access and make use of the services and resources provided
by another software program that implements that API. An
API serves as an interface between different software pro-
grams and facilitates their interaction. The API economy is
a complex network of services built from APIs enabled by
multiple providers, with each API having its own engage-
ment model and objectives. APIs are typically governed by
terms of service, which are rules that an API consumer must
agree to abide by in order to purchase and/or use an API.
When selecting APIs and their corresponding terms of
service, APl consumers have different objectives and/or
criteria to consider in making their selection.

API matchmaking is known. Thousands of APIs are now
readily available, with differing functionality and API fea-
tures. In order to support API consumers in selecting the
appropriate APIs, effective automated methods to match
APIs with consumer requirements and/or preferences are
required.

Feature models are known. A feature model is a compact
representation of software “features.” A feature is a promi-
nent or distinctive user-visible aspect, quality, or character-
istic of a software system. Feature models are visually
represented by using feature diagrams. Feature models are
used during the software development process and are
commonly used to produce other assets such as documents,
architecture definition, and/or pieces of code.

SUMMARY

According to an aspect of the present invention, there is
a method, computer program product and/or system that
performs the following steps (not necessarily in the follow-
ing order): (i) receiving a set of application programming
interface (API) terms-of-service (ToS) feature information
that includes identifying information for at least one API and
respectively associated ToS features for each identified API;
(i1) receiving ToS preference information that relates to ToS
related preferences for a user; and (iii) evaluating a strength
of'a match between each respective API identified in the API
ToS feature information set and the ToS preference infor-
mation to yield a match value for each API identified in the
API ToS feature information set. The respective associated
ToS features include at least a first ToS field. At least one
API, of the set of API ToS feature information, includes
multiple, alternative values in its respectively corresponding
first ToS field.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a cloud computing node according to an
embodiment of the present invention;

FIG. 2 depicts a cloud computing environment (also
referred to as the “first embodiment system™) according to
an embodiment of the present invention;

FIG. 3 depicts abstraction model layers according to the
first embodiment system;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 is a flowchart showing a first embodiment method
performed, at least in part, by the first embodiment system;

FIG. 5 is a block diagram view of a machine logic (for
example, software) portion of the first embodiment system;

FIG. 6A is a screenshot view showing information that is
generated by embodiments of the present invention;

FIG. 6B is a screenshot view showing information that is
generated by embodiments of the present invention;

FIG. 6C is a screenshot view showing information that is
generated by embodiments of the present invention;

FIG. 7 is a tree diagram view showing information that is
helpful in understanding embodiments of the present inven-
tion;

FIG. 8 is a tree diagram view showing information that is
helpful in understanding embodiments of the present inven-
tion;

FIG. 9 is a tree diagram view showing information that is
helpful in understanding embodiments of the present inven-
tion;

FIG. 10 is a flowchart view of a second embodiment of a
method according to the present invention;

FIG. 11A is a tree diagram view showing information that
is helpful in understanding embodiments of the present
invention;

FIG. 11B is a tree diagram view showing information that
is helpful in understanding embodiments of the present
invention;

FIG. 12A is a first screenshot view generated by the first
embodiment system; and

FIG. 12B is a second screenshot view generated by the
first embodiment system.

DETAILED DESCRIPTION

API consumers looking for API components are often
interested in terms of service (for example, contract terms),
in addition to the functionality of the API. Some embodi-
ments of the present invention use machine logic based
algorithms to help determine and/or prioritize an API’s
desirability to an end user based, at least in part, on how
closely the terms of service meet the end user’s “terms of
service (ToS) feature” (see definition, below, in the Defini-
tions sub-section of this Detailed Description section) pref-
erences. This Detailed Description section is divided into the
following sub-sections: (i) The Hardware and Software
Environment; (ii) Example Embodiment; (iii) Further Com-
ments and/or Embodiments; and (iv) Definitions.

1. THE HARDWARE AND SOFTWARE ENVIRON-
MENT

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory

US 9,454,409 B2

3

(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the

10

15

20

25

30

35

40

45

50

55

60

65

4

instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

US 9,454,409 B2

5

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based email). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-

10

15

20

25

30

35

40

45

50

55

60

6

ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for loadbalancing
between clouds).

A cloud computing environment is service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10
is only one example of a suitable cloud computing node and
is not intended to suggest any limitation as to the scope of
use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node 10 is
capable of being implemented and/or performing any of the
functionality set forth hereinabove.

In cloud computing node 10 there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the
general context of computer system executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server 12 in cloud
computing node 10 is shown in the form of a general-
purpose computing device. The components of computer
system/server 12 may include, but are not limited to, one or
more processors or processing units 16, a system memory
28, and a bus 18 that couples various system components
including system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-
tectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. Com-

US 9,454,409 B2

7

puter systeny/server 12 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, storage system 34 can
be provided for reading from and writing to a non-remov-
able, non-volatile magnetic media (not shown and typically
called a “hard drive”). Although not shown, a magnetic disk
drive for reading from and writing to a removable, non-
volatile magnetic disk (e.g., a “floppy disk™), and an optical
disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus 18 by one or more data media
interfaces. As will be further depicted and described below,
memory 28 may include at least one program product having
a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple-
mentation of a networking environment. Program modules
42 generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/0) interfaces 22. Still yet, com-
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under-
stood that although not shown, other hardware and/or soft-
ware components could be used in conjunction with com-
puter system/server 12. Examples include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

Referring now to FIG. 2, illustrative cloud computing
environment 50 is depicted. As shown, cloud computing
environment 50 comprises one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 54A, desktop computer 54B,
laptop computer 54C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
is understood that the types of computing devices 54A-N
shown in FIG. 2 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50

20

35

40

45

8

can communicate with any type of computerized device over
any type of network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
2) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 3 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architec-
ture based servers, in one example IBM pSeries® systems;
IBM xSeries® systems; IBM BladeCenter® systems; stor-
age devices; networks and networking components.
Examples of software components include network appli-
cation server software, in one example IBM WebSphere®
application server software; and database software, in one
example IBM DB2® database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered in many jurisdictions worldwide).

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides iden-
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provides pre-
arrangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 66 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation;
software development and lifecycle management; virtual
classroom education delivery; data analytics processing;
transaction processing; and API matchmaking.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the invention. However, it should be appre-
ciated that any particular program nomenclature herein is
used merely for convenience, and thus the invention should
not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the

US 9,454,409 B2

9

art without departing from the scope and spirit of the
invention. The terminology used herein was chosen to best
explain the principles of the embodiment, the practical
application or technical improvement over technologies
found in the marketplace, or to enable others of ordinary
skill in the art to understand the embodiments disclosed
herein.

1I. EXAMPLE EMBODIMENT

FIG. 4 shows flowchart 250 depicting a method according
to the present invention. FIG. 5 shows program 300 for
performing at least some of the method steps of flowchart
250. This method and associated software will now be
discussed, over the course of the following paragraphs, with
extensive reference to FIG. 4 (for the method step blocks)
and FIG. 5 (for the software blocks). As shown in FIG. 5, in
this embodiment, program 300 is stored in storage device
60a (see FIG. 3) in a manner less transitory than a signal in
transit.

The present embodiment refers extensively to application
programming interfaces (APIs) from an API marketplace.
For example purposes, this embodiment includes three such
APIs: (1) API A, which adds two numbers; (i1) API B, which
multiplies two numbers; and (iii) API C, which adds two
numbers. In addition to this API functionality, the APIs also
include terms of service (ToS) and ToS features, which are
discussed in more depth below (individual ToS features may
also be referred to as “ToS fields™).

Some characteristics of conventional APIs are discussed
above in the Background of the Invention section of this
Detailed Description. Further, an example of a conventional
API is an API that adheres to the constraints of a REST
architecture. However, various APIs may be designed for
many different machine logic architectures (now known or
to be developed in the future). For purposes of the present
document, an API may be any digital and/or software service
that can be accessed via a computer. Furthermore, as used
herein, the term “API” may refer to an APL a set of APIs
(including a composite capability that is delivered by more
than one API), and/or an API component (that has its own
associated ToS). For example, an API may include elements
of one or more of the Service Model offerings discussed
above in the Hardware And Software Environment sub-
section of this Detailed Description, including, for example:
(1) Software as a Service; (ii) Platform as a Service; and/or
(iii) Infrastructure as a Service. Or, in another embodiment
of the present invention, an API may include internet con-
nectivity services provided by an internet service provider
and/or any other internet-based service that includes a
license.

Processing begins at step S255, where a programmer uses
a user interface module (or “mod”) 302 (see FIG. 5) to
choose the following API options: (i) functionality require-
ment(s); and (ii) ToS feature preference(s). FIG. 12A shows
screenshot 1200a which is part of the user interface for this
embodiment, through which the programmer communicates
his functional and ToS-related preferences (for example,
requirements, desiderata). In the present embodiment, the
programmer has a single functionality requirement and two
feature preferences. The functionality requirement is that the
API must add two numbers. The ToS feature preferences, on
the other hand, are characterized in terms of their corre-
sponding ToS features: (i) a commerciality feature, which
defines whether ToS allow for commercial or non-commer-
cial use; and (ii) a geographic feature, which defines the
geographic region in which the ToS apply and therefore,
where the API may be used. In this example embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

10

the programmer’s commerciality feature preference is
“commercial,” and the geographic feature preference is
“North American use only.”

ToS features may include a wide variety of API charac-
teristics. A list of some known ToS features typically
included in legal ToS contracts is provided in the Further
Comments and/or Embodiments sub-section of this Detailed
Description. However, ToS features may also include fea-
tures that are not typically included in legal ToS contracts.
For example, ToS features may include details about the
particular software and/or hardware environment used by
the process that an API implements. Or, in another embodi-
ment, ToS features may include dependency related features
such as: (i) third-party accounts and/or credentials needed to
use the API; (ii) additional APIs that the API is dependent on
for operation (or, vice versa: additional APIs that require the
API for operation); and/or (iii) any additional hardware
and/or software required by the programmer in order to use
the API. Furthermore, additional embodiments of the present
invention may include one or more of the following ToS
features: (i) restrictions on who can use the API; (i) geo-
graphical restrictions on where a user may use the API; (iii)
brand permission (and its implications on the consumer);
and/or (iv) data privacy aspects of the API. For an even
further explanation of ToS features, please see the Defini-
tions sub-section of this Detailed Description.

In some embodiments, two or more APIs may be merged
to create a merged set of ToS features representing the ToS
features of more than one API. When used herein, merged
sets of ToS features may be interchangeable with ToS
features such that any discussion of ToS features in this
Detailed Description may also refer to merged sets of ToS
features.

ToS features and ToS feature preferences (also referred to
as “ToS related preferences”) may be expressed in a number
of ways. In the present embodiment, as stated above, the
programmer’s commerciality feature preference is “com-
mercial,” and the geographic feature preference is “North
American use only.” However, in other embodiments, ToS
features and/or ToS feature preferences may be expressed
differently. For example, in one embodiment, the program-
mer’s geographic feature preference (or an API’s geographic
ToS feature) may be presented as a list of multiple, alter-
native values, such as the following: (i) North American use;
(i1) European use; and/or (iii) Australian use. Or, in another
embodiment, a ToS feature and/or a ToS feature preference
may be expressed numerically. For example, a permitted
users ToS feature (or ToS feature preference) may be
expressed by any of the following example descriptions: (i)
five; (ii) at least five; (iii) no greater than five; and/or (iv) any
odd number.

Referring back to FIG. 4 and the present embodiment,
processing proceeds to step S260, where a functionality mod
304 (See FIG. 5) determines one or more matches for the
functionality requirement(s). Using the present example,
only two APIs match the programmer’s functionality
requirement of being able to add two numbers: (i) API A;
and (i) API C. Because API B multiplies two numbers
instead of adding two numbers, API B is not a match.

Although a simplified example has been provided in the
present embodiment, it should be understood that the func-
tionality requirements may include a wide range of possible
requirements. For example, in one embodiment, the func-
tionality requirements may be so specific that no matches are
found. In such an embodiment, the Ul mod 302 may inform
the programmer that no matches have been found so that the
programmer can revise the functionality requirements.

US 9,454,409 B2

11

Alternatively, in another embodiment, the functionality
requirements may be very broad such that a large number of
potential APIs are returned as matches. In fact, in some
embodiments, there may be no functionality requirements at
all, such that all APIs from an API marketplace are consid-
ered matches for purposes of step S260. Furthermore,
matches between API functionality and programmer func-
tionality requirements may be represented by a functionality
match value, wherein the functionality match value repre-
sents the degree to which the API functionality and the
programmer functionality requirements match.

Processing proceeds to step S265, where a ToS mod 306
(See FIG. 5) ranks the functionality match(es) based on the
programmer’s ToS preferences. In the present embodiment,
there are two functionality matches: API A and API C (the
features of API A and API C together form a set of API ToS
feature information). In the present embodiment, API A
includes: (i) a commerciality feature of “commercial”; and
(ii) a geographic feature of “North American use only.” API
C includes: (ii) a commerciality feature of “non-commer-
cial”; and (ii) a geographic feature of “North American use
only.” Therefore, API A is a one hundred percent (100%)
match with the programmer’s ToS preferences, as two of
two features match. However, because API C includes a
non-matching commerciality feature (of “non-commer-
cial”), API C is only a fifty percent (50%) match (as only one
of the two features match with the programmer’s prefer-
ences). In this embodiment, the strength of the respective
matches is represented by a ToS match value, where API A’s
ToS match value is 100% and API C’s ToS match value is
50%. Because API A has a higher ToS match value than API
C, the ToS mod 306 ranks API A higher than API B.

Processing proceeds to S270, where the Ul mod 302 (See
FIG. 5) communicates at least one match to the programmer.
In the present example, Ul mod 302 displays both API A and
API C on the programmer’s computer screen. FIG. 12B
shows screenshot 12006 which is part of the user interface
for this embodiment. In this particular embodiment, the user
interface 12005 also shows: (i) the corresponding ToS match
values for API A and API C; and (ii) API B, with indicators
to show that it has been excluded from the list. However, in
other embodiments, it is contemplated that the ToS match
values may be so low that no match should be presented to
the programmer. This may occur, for example, if the ToS
match values for all APIs equal zero. In this case, the Ul mod
302 may inform the programmer that no matches have been
found and allow the programmer to revise the programmer’s
ToS preferences to increase the chance of finding matches.

Processing proceeds to S275, where the programmer
purchases one or more API(s) using a purchase mod 308. In
the present embodiment, the programmer purchases API A,
as API A fully meets the programmer’s functionality require-
ments and ToS preferences. However, in other examples, the
programmer may choose to purchase API C or elect to
purchase no APIs at all. Alternatively, in another embodi-
ment, the programmer may be presented with purchase
options that allow the programmer to purchase multiple
APIs at the same time as part of an API package (at a
discount, for example). Or, in yet another embodiment, the
APIs may be available under a royalty free open-source
license, thereby allowing the programmer to select and use
the APIs without having to purchase them at all.

III. FURTHER COMMENTS AND/OR EMBODI-
MENTS

Some embodiments of the present invention recognize the
following facts, potential problems and/or potential areas for
improvement with respect to the current state of the art: (i)

10

15

20

25

30

35

40

45

50

55

60

65

12

there is a lack of application programming interface (API)
Terms of Service (ToS) standards; (ii) there is a lack of
effective, context-based methods to traverse through APIs
and generate user-specific views of API collections; (iii) ToS
often provide several pricing package and Quality of Service
(QoS) variants as part of their usage agreements; (iv)
existing methods do not rely on feature models and do not
provide means of matchmaking between licenses and a user
profile; (v) there are no formal models of API features (for
example, legal, technical, etc.); (vi) existing methods con-
sider only the use of APIs, and not their underlying features;
(vii) existing methods do not take into account composition
of features from multiple APIs, each of which is supplied by
a different provider, where each API provides different
functionality; (viii) there is no existing concept of profile-
driven matching and/or customizations; and/or (ix) existing
service description mechanisms focus on describing unique
ToS for a single service instead of having variable ToS
definitions.

Some embodiments of the present invention may include
one, or more, of the following features, characteristics
and/or advantages: (i) feature models that are a compact
representation of all the products of a software product line;
(ii) feature models that provide an expressive mechanism to
capture different features and/or aspects of ToS (including,
for example, legal terms, QoS, and their alternatives); (iii)
feature-based ToS documents that focus on the concept of
variability; (iv) providing multiple (valid) ToS for a single
service; (v) describing ToS variants in a single artifact (a ToS
feature model); (vi) automation advantages; and/or (vii)
time-to-value advantages.

Some embodiments of the present invention may include
one, or more, of the following additional features, charac-
teristics and/or advantages: (i) providing multi-level struc-
ture to ToS documents; (ii) depicting alternatives in ToS
provisioning; (iii) using the rich semantics of feature mod-
els—including, for example, cross-tree relationships—in
contrast to policies; (iv) considering similar vocabulary
between ToS; (v) ensuring comparability between ToS; (vi)
allowing the automatic selection of APIs with matching ToS
variants; (vii) enabling the stating of quantitative informa-
tion (e.g. risk); (viii) allowing ToS feature models to be used
for API(s); and/or (ix) allowing future extensions to be built
upon established feature model literature (including, for
example, staged configuration approaches and/or collabora-
tive modeling approaches known now or in the future).

In many embodiments of the present invention, a system
and method are disclosed to represent API Terms of Service
and to select APIs in a marketplace based on consumer ToS
requirements. More particularly, disclosed is a method that
employs the following: (i) an API marketplace; (ii) an API
model; (iii) a feature-based model of ToS for APIs (“ToS
feature model”); (iv) a feature-based model of consumer
profiles (“consumer feature model”); (v) a means of match-
making between ToS feature models and consumer feature
models, (vi) a means of selecting ToS variants to meet
consumer requirements; (vii) an extensible model to allow
for industry specific ToS items; and/or (viii) a cost function
to compute the opportunity cost for using a specific ToS.

In some embodiments of the present invention, the ToS
feature model described in the previous paragraph includes
the following categories of ToS features: (i) agreement-
related items, such as parties, licenses, and/or changes; (ii)
privacy-related items, such as information about privacy,
confidentiality, and/or third party interactions; (iii) payment-
related items, such as billing modes, billing frequency, and
taxes; (iv) legal-related items, such as local restrictions

US 9,454,409 B2

13

and/or geographical restrictions, including information
regarding where the service can be accessed from; (v)
technical-related items, such as Internet Protocol, data
movement, and/or backups; (vi) support-related items, such
as type and cost of support; (vii) termination-related items,
such as how to deal with cancelation, suspension, and/or
resumption; (viii) glossary and term-related items, such as
definition and names of used terms; and/or (ix) notification-
related items, such as the medium through which users are
informed about changes, such as via email and/or phone.

Referring to the features listed in the above paragraph,
FIG. 6A provides an example Ul 600a for inputting the
agreement-related items (listed in (i) above). Similarly, FIG.
6B provides an example UI 6005 for inputting the payment-
related items (listed in (iii) above). Furthermore, FIG. 6C
provides an example Ul 600c¢ for creating, comparing,
viewing, and/or updating any of the ToS features discussed
above or elsewhere herein.

In one ToS feature model 700 of the present invention, an
API and/or a composition of APIs that offers more than one
ToS option is provided (See FIG. 7). This embodiment
provides at least some of the following ToS features: (i)
alternative payment models (e.g. billing mode and/or billing
frequency); (ii) alternative QoS, support, or privacy models
depending on the type of account (e.g. free and/or premium
accounts); and/or (iii) optional aspects, such as the inclusion
of taxes in billing. The ToS feature model 700 of this
embodiment allows for the depiction of variability of these
options, including the ability to depict inclusive and/or
exclusive options. For example, in this embodiment, billing
frequency is represented as “monthly ‘exclusive or’
weekly,” which means that the billing frequency must be
either monthly or weekly, but not both monthly and weekly.

Referring still to the embodiment shown in FIG. 7, the
ToS feature model 700 is used by both API providers and
API consumers. API providers state ToS alternatives their
API(s) offer, while API consumers state their required ToS
alternatives (per ToS feature). The purpose for having pro-
viders and consumers use the same ToS feature model is to
document and communicate ToS requirements in an agreed-
upon format and to perform automated matchmaking
between the consumer model(s) and the provider model(s).

In another embodiment of the present invention, three ToS
feature models 800 are provided (See FIG. 8). In this
embodiment, a generic ToS feature model 810 defines a
superset of relevant API ToS features and acts as a blueprint
for a provider ToS feature model 830 and a consumer ToS
feature model 850. The provider ToS feature model 830: (i)
results from instantiating the generic ToS feature model; (ii)
represents the specific ToS for one or more APIs; and/or (iii)
corresponds to a provider-side policy. Similarly, the con-
sumer ToS feature model 850: (i) results from instantiating
the generic ToS feature model; (i) represents a consumer’s
required and/or desired ToS aspects; and/or (iii) corresponds
to a user profile.

In some embodiments of the present invention, multiple
provider ToS feature models may be matched with multiple
consumer ToS feature models. In these embodiments, the
multiple provider ToS feature models may be merged to
form a single provider ToS feature model 830, and multiple
consumer ToS feature models may be merged to form a
single consumer ToS feature model 850 (See FIG. 8). For
further discussion of the merging of feature models, see the
discussion of FIGS. 11A and 11B, below.

In another embodiment of the present invention, a ToS
feature model 900 includes quantitative information with
numeric attributes (See FIG. 9). In this embodiment, one or

10

15

20

25

30

35

40

45

50

55

60

65

14

more ToS features include numeric attributes to: (i) represent
numeric capabilities of ToS features (e.g., the volume of a
free quota); (ii) represent numeric requirements for ToS
features; and/or (iii) express risks associated with ToS
features in terms of opportunity cost (e.g., if a change to
service level agreements is part of the ToS, opportunity cost
captures the resulting risk). The numeric attributes also
provide an approach for variability resolution. The approach
includes the following steps: (i) identifying services whose
ToS variants match consumer requirements; and/or (ii)
selecting ToS variants to minimize or maximize certain
numeric attributes.

Utilizing the above-mentioned feature models of many
embodiments of the present invention, method 1000 is
adapted to match consumer profiles to applicable API Terms
of Service (See FIG. 10). Processing begins at step S1002,
where a consumer profile is defined for a given composition
of APIs, resulting in the creation of one or more consumer
ToS feature models. In the present embodiment, an app
developer 1050 has selected a composition of APIs based on
a retail environment. One API, for example, allows a user to
check-in at a location. Another API allows a merchant to
send a promotional offer to a user. Once the consumer profile
for this composition of APIs has been defined, it is saved to
a consumer profile database 1052, and corresponding con-
sumer ToS feature model(s) are created.

Processing proceeds to step S1004, where additional
consumer profiles are defined for each dependent API and/or
API type (See FIG. 10), resulting in: (i) the refinement of the
existing consumer ToS feature model(s); and/or (ii) the
creation of one or more additional consumer ToS feature
models. In the present embodiment, for example, a con-
sumer requires a brand limitation (specifically, the consumer
requires that a brand not be shared by API providers).
Additionally, the consumer requires that the QoS for APIs
include 99.9% availability. Both of these requirements are
incorporated into the consumer ToS feature model(s).

Referring still to FIG. 10, processing proceeds to step
S1006, where provider ToS feature model(s) are retrieved
from an API marketplace database 1054, and matchmaking
for the API(s) is executed. The strength of the match
between the provider ToS feature model(s) and the consumer
ToS feature model(s) is represented by a match value. In one
embodiment, the match value is binary, representing only
whether a match has been found. In other embodiments,
however, the match value may represent more than a tradi-
tional “yes” or “no” result. For example, in some embodi-
ments, the match value is represented by a percentage
indicating the degree to which a provider ToS feature model
matches a consumer ToS feature model.

Processing continues to step S1008, where the method
1000 checks whether matching APIs and/or compositions of
APIs have been found. If a match is found, processing
proceeds to step S1010, where a list of matching APIs is
provided to a user. If no match is found, processing proceeds
to step S1012, and the consumer profile is updated to relax
one or more conditions. For example, in the present embodi-
ment, no match is found, so the brand limitation is removed
and the QoS requirement is reduced to 97%. Processing then
proceeds back to step S1006. Due to the relaxed conditions,
the matching in step S1008 is successful, and processing
proceeds to step S1010, where a list of matching APIs is
provided to the user.

In some embodiments of the present invention, API
feature model(s) are combined to create feature model(s) for
compositions of those API(s). A variety of methods may be
used to accomplish this. In one embodiment (See FIG. 11A),

US 9,454,409 B2

15

an aggregate method 1100q is used. In this embodiment,
individual ToS feature models are united under a new parent
feature, and cross-tree constraints are used to denote depen-
dencies (such as “requires” or “excludes”) between ToS
features. The advantage to this method lies in the simplicity
of the method and the preservation of individual models. In
another embodiment of the present invention (See FIG.
11B), a merge method 11005 is used. In this embodiment,
new feature model(s) are composed by overlapping features
of existing ToS feature models. When possible, features
from separate feature models are merged, leading to new
combined features in the new feature model. Additional
methods of merging feature models include, but are not
limited to, the following: (i) defining additional merge
criteria and using a machine learning algorithm to improve
merge operations over time; and/or (ii) utilizing a human
agent to manually merge feature model data.

In an embodiment of the present invention, the merge
method 110056 (See FIG. 11B) is used to merge two APIs,
API A and API B. In this embodiment, API A includes the
following features: (Ai) a commercial license; and (Ali) a
billing frequency of monthly “exclusive or” weekly. API B
includes the following features: (Bi) a commercial license;
and (Bii) a geographic restriction for North American use
only. When merged, the resulting API AB includes the
following features: (ABi) a commercial license; (ABii) a
billing frequency of monthly “exclusive or” weekly; and
(ABiii) a geographic restriction for North American use
only.

IV. DEFINITIONS

Present invention: should not be taken as an absolute
indication that the subject matter described by the term
“present invention” is covered by either the claims as they
are filed, or by the claims that may eventually issue after
patent prosecution; while the term “present invention™ is
used to help the reader to get a general feel for which
disclosures herein that are believed as maybe being new, this
understanding, as indicated by use of the term “present
invention,” is tentative and provisional and subject to
change over the course of patent prosecution as relevant
information is developed and as the claims are potentially
amended.

Embodiment: see definition of “present invention”
above—similar cautions apply to the term “embodiment.”

and/or: inclusive or; for example, A, B “and/or” C means
that at least one of A or B or C is true and applicable.

User/subscriber: includes, but is not necessarily limited
to, the following: (i) a single individual human; (ii) an
artificial intelligence entity with sufficient intelligence to act
as a user or subscriber; and/or (iii) a group of related users
or subscribers.

Module/Sub-Module: any set of hardware, firmware and/
or software that operatively works to do some kind of
function, without regard to whether the module is: (i) in a
single local proximity; (ii) distributed over a wide area; (iii)
in a single proximity within a larger piece of software code;
(iv) located within a single piece of software code; (v)
located in a single storage device, memory or medium; (vi)
mechanically connected; (vii) electrically connected; and/or
(viii) connected in data communication.

Computer: any device with significant data processing
and/or machine readable instruction reading capabilities
including, but not limited to: desktop computers, mainframe
computers, laptop computers, field-programmable gate array
(FPGA) based devices, smart phones, personal digital assis-
tants (PDAs), body-mounted or inserted computers, embed-

10

15

20

25

30

35

40

45

50

55

65

16

ded device style computers, application-specific integrated
circuit (ASIC) based devices.
Term-of-Service (ToS) feature: any non-functionality
related feature of an API including, but not limited to,
features relating to the following subject matter areas: legal,
financial, support, geographical, contractual, privacy, confi-
dential, intellectual property terms, and/or change notifica-
tions; ToS features do not relate to the functionality of the
ToS.
What is claimed is:
1. A computer-implemented method comprising:
receiving, by one or more processors, a set of application
programming interface (API) terms-of-service (ToS)
feature information that includes identifying informa-
tion for at least one API and respectively associated
ToS features for each identified API;

receiving, by one or more processors, ToS preference
information that relates to ToS related preferences for
a user, submitted by the user via a user interface; and

evaluating, by one or more processors, a strength of a
match between each respective API identified in the
API ToS feature information set and the ToS preference
information to yield a match value for each API iden-
tified in the API ToS feature information set;

wherein:

the respectively associated ToS features do not relate to

API functionality;

the ToS related preferences for the user do not include

preferences for desired API functionality;

the respectively associated ToS features include at least a

first ToS field; and

at least one API identified in the API ToS information set

includes multiple, alternative values in its respectively
corresponding first ToS field.

2. The computer-implemented method of claim 1, further
comprising:

determining, by one or more processors, the at least one

API identified in the set of API ToS feature information
based upon the strength of a respective functionality
match with functionality preferences of a user.

3. The computer-implemented method of claim 1,
wherein:

the respectively associated ToS features relate to at least

one of the following subject matter areas: legal, finan-
cial, support, contractual, privacy, confidential, intel-
lectual property terms, and/or change notifications.

4. The computer-implemented method of claim 1,
wherein:

the ToS features of the at least one API identified in the

API ToS feature information set are a product of
merging the ToS features of two or more APIs.

5. The computer-implemented method of claim 1,
wherein:

at least one of the ToS features is represented as a number

indicating a value of the respective ToS feature.
6. The computer-implemented method of claim 1,
wherein:
the ToS features of each API identified in the API ToS
feature information set are represented by ToS feature
models, the ToS feature models expressing any require-
ments, limitations, and/or alternative options for each
ToS feature; and

the ToS preference information is represented by one or
more consumer feature models, the consumer feature
models expressing the user’s preferred requirements,
limitations, and/or alternative options for each ToS
feature.

US 9,454,409 B2

17

7. The computer-implemented method of claim 1,
wherein:
at least one of the ToS features includes a geographical
restriction on where the user may use the ToS feature’s
respectively associated API.
8. The computer-implemented method of claim 1,
wherein:
at least one of the ToS features includes a license under
which the ToS feature’s respectively associated API is
being offered.
9. The computer-implemented method of claim 1,
wherein:
at least one of the ToS features includes an amount of
technical support provided for the ToS feature’s respec-
tively associated API.
10. A computer program product comprising a computer
readable storage medium having stored thereon:
first program instructions programmed to receive a set of
application programming interface (API) terms-of-ser-
vice (ToS) feature information that includes identifying
information for at least one API and respectively asso-
ciated ToS features for each identified API;
second program instructions programmed to receive ToS
preference information that relates to ToS related pref-
erences for a user, submitted by the user via a user
interface; and
third program instructions programmed to evaluate a
strength of a match between each respective API iden-
tified in the API ToS feature information set and the
ToS preference information to yield a match value for
each API identified in the API ToS feature information
set;
wherein:
the respectively associated ToS features do not relate to
API functionality;
the ToS related preferences for the user do not include
preferences for desired API functionality;
the respectively associated ToS features include at least a
first ToS field; and
at least one API identified in the API ToS information set
includes multiple, alternative values in its respectively
corresponding first ToS field.
11. The computer program product of claim 10, further
comprising:
fourth program instructions programmed to determine the
at least one API identified in the set of API ToS feature
information based upon the strength of a respective
functionality match with functionality preferences of a
user.
12. The computer program product of claim 10, wherein:
the respectively associated ToS features relate to at least
one of the following subject matter areas: legal, finan-
cial, support, contractual, privacy, confidential, intel-
lectual property terms, and/or change notifications.
13. The computer program product of claim 10, wherein:
the ToS features of the at least one API identified in the
API ToS feature information set are a product of
merging the ToS features of two or more APIs.
14. The computer program product of claim 10, wherein:
at least one of the ToS features is represented as a number
indicating a value of the respective ToS feature.
15. The computer program product of claim 10, wherein:
the ToS features of each API identified in the API ToS
feature information set are represented by ToS feature
models, the ToS feature models expressing any require-
ments, limitations, and/or alternative options for each
ToS feature; and

5

10

20

25

30

35

40

45

50

55

60

65

18

the ToS preference information is represented by one or
more consumer feature models, the consumer feature
models expressing the user’s preferred requirements,
limitations, and/or alternative options for each ToS
feature.
16. A computer system comprising:
a processor(s) set; and
a computer readable storage medium;
wherein:
the processor set is structured, located, connected and/or
programmed to run program instructions stored on the
computer readable storage medium; and
the program instructions include:
first program instructions programmed to receive a set
of application programming interface (API) terms-
of-service (ToS) feature information that includes
identifying information for at least one API and
respectively associated ToS features for each iden-
tified API;
second program instructions programmed to receive
ToS preference information that relates to ToS
related preferences for a user, submitted by the user
via a user interface; and
third program instructions programmed to evaluate a
strength of a match between each respective API
identified in the API ToS feature information set and
the ToS preference information to yield a match
value for each API identified in the API ToS feature
information set;
wherein:
the respectively associated ToS features do not relate to
API functionality;
the ToS related preferences for the user do not include
preferences for desired API functionality;
the respectively associated ToS features include at least
a first ToS field; and
at least one API identified in the API ToS information
set includes multiple, alternative values in its respec-
tively corresponding first ToS field.
17. The computer system of claim 16, further comprising:
fourth program instructions programmed to determine the
at least one API identified in the set of API ToS feature
information based upon the strength of a respective
functionality match with functionality preferences of a
user.
18. The computer system of claim 16, wherein:
the respectively associated ToS features relate to at least
one of the following subject matter areas: legal, finan-
cial, support, contractual, privacy, confidential, intel-
lectual property terms, and/or change notifications.
19. The computer system of claim 16, wherein:
the ToS features of the at least one API identified in the
API ToS feature information set are a product of
merging the ToS features of two or more APIs.
20. The computer system of claim 16, wherein:
the ToS features of each API identified in the API ToS
feature information set are represented by ToS feature
models, the ToS feature models expressing any require-
ments, limitations, and/or alternative options for each
ToS feature; and
the ToS preference information is represented by one or
more consumer feature models, the consumer feature
models expressing the user’s preferred requirements,
limitations, and/or alternative options for each ToS
feature.

